» » Group Theory and its Application to the Quantum Mechanics of Atomic Spectra

Download Group Theory and its Application to the Quantum Mechanics of Atomic Spectra fb2

by Eugene P. Wigner,J. J. Griffin
Download Group Theory and its Application to the Quantum Mechanics of Atomic Spectra fb2
Mathematics
  • Author:
    Eugene P. Wigner,J. J. Griffin
  • ISBN:
    0127505504
  • ISBN13:
    978-0127505503
  • Genre:
  • Publisher:
    Academic Press; Expanded and Improved Edition edition (January 1, 1959)
  • Pages:
    372 pages
  • Subcategory:
    Mathematics
  • Language:
  • FB2 format
    1435 kb
  • ePUB format
    1252 kb
  • DJVU format
    1450 kb
  • Rating:
    4.2
  • Votes:
    135
  • Formats:
    docx txt rtf azw


I mention Hamermesh, Group Theory and its Physical Applications (1962), at this juncture, because his book distills .

I mention Hamermesh, Group Theory and its Physical Applications (1962), at this juncture, because his book distills much of Wigner's book at a more elementary, expository, level. In other words, study both, concurrently ! (4) Eugene Wigner writes that his three foremost accomplishments brought forth in the monograph are the concept of parity, quantum theory of vector-addition model, and "almost all the rules of spectroscopy follow from symmetry.

Wigner's book (published in 1959) is an expanded and revised English translation of the book originally .

Wigner's book (published in 1959) is an expanded and revised English translation of the book originally published in German in 1931. Starting from vectors and matrices the author moves on to the description of abstract group theory and its application to atomic spectra. This is a classical reference in the field of quantum mechanics and atomic physics which should be consulted by most physicists and chemists although the style is rather concise and the expected reader is someone that has already been exposed to the basic concepts of group theory and quantum mechanics.

Eugene Paul Wigner, James J. Griffin.

And Its Application to the Quantum Mechanics of Atomic Spectra}, author {Eugene Paul Wigner and James J. Griffin}, year {1959} }. Eugene Paul Wigner, James J.

Eugene Wigner won the 1963 Nobel Prize in Physics, in part due to his contributions to symmetry principles in. .

Eugene Wigner won the 1963 Nobel Prize in Physics, in part due to his contributions to symmetry principles in physics. In reading other books on group theory and quantum physics, you usually find a large number of references to Wigner's book. In fact, other books often state a theorem and then refer to Wigner's book for the proof. For me, I was trying to find a proof that I could understand for the Vector Addition Theorem for angular momentum

Academic Press, 1959 - 372 sidor. versatt av. J.

Academic Press, 1959 - 372 sidor.

Group Theory: And Its Application To The Quantum Mechanics Of Atomic Spectra aims to describe the application of group theoretical methods to problems of quantum mechanics with specific reference to atomic spectra. Chapters 1 to 3 discuss the elements of linear vector theory, while Chapters 4 to 6 deal more specifically with the rudiments of quantum mechanics itself. Chapters 7 to 16 discuss the abstract group theory, invariant subgroups, and the general theory of representations.

Group Theory: And Its Application To The Quantum Mechanics Of Atomic Spectra. Details (if other): Cancel. Thanks for telling us about the problem. Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra.

Translated from the German by . Expanded and improved ed. by Eugene Paul Wigner

Translated from the German by . by Eugene Paul Wigner. Published 1964 by Academic Press in New York. Group theory, Groups, Theory of, Quantum theory, Theory of Groups. Bibliographical footnotes. Pure and applied physics, v. 5. The Physical Object.

1985) Applications of Quantum Mechanics (1926–1933).

P. Wigner: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, translated by J. Griffin ( Academic, New York 1959 . oogle Scholar. 1985) Applications of Quantum Mechanics (1926–1933). In: Blum . Rechenberg . Dürr HP. (eds) Original Scientific Papers Wissenschaftliche Originalarbeiten. Werner Heisenberg Gesammelte Werke Collected Works, vol A, 1. Springer, Berlin, Heidelberg.


Lyrtois
This is the classic, timeless text on group and representation theory as applied to atomic spectra with treatments of angular momentum in quantum mechanics, selection and intensity rules with electron spin, fine structure of spectral lines, and Racah coefficients. This Kindle eTextbook is a Print Replica, which means that the pages in their entirety are rendered as graphic images. This means that the text and equations resize together and it doesn't happen that the equations are tiny and almost unreadable and can't be resized as happens with so many Kindle eTextbooks that render the equations as graphic images but not the text. The Kindle readers do not yet support mathematical markup language, so equations are always graphic images. Although Print Replica eTextbooks result in larger file sizes, it is worth it to make the equations readable! By the way, I am using the latest Kindle for PC reader on a 15 inch Windows 10 laptop. Amazon should make all Kindle books with equations available in Print Replica format as well as the format where only the equations are graphic images!
Ximinon
Eugene Wigner won the 1963 Nobel Prize in Physics, in part due to his contributions to symmetry principles in physics. In reading other books on group theory and quantum physics, you usually find a large number of references to Wigner's book. In fact, other books often state a theorem and then refer to Wigner's book for the proof. For me, I was trying to find a proof that I could understand for the Vector Addition Theorem for angular momentum. The proof involves breaking down the direct product of two angular momentum representations into a sum of irreducible representations--that is, D(i) x D(j) = D(i+j) + ... + D(i-j). For example D(1) x D(1) = D(2) + D(1) + D(0). Wigner gives a simple proof for this theorem on pp.186-187 in which he just rearranges the components of the characters of the representations. I had already read the proofs for this theorem in Tinkham Group Theory and Quantum Mechanics and Heine Group Theory in Quantum Mechanics: An Introduction to Its Present Usage (Dover Books on Physics), but either I could not understand their proofs or I just could not find them convincing. Wigner's proof, however, was clear and understandable. Please note that I have scanned pp.184-189 so that the reader can get a look at Wigner's proof.
Magis
Wigner's book (published in 1959) is an expanded and revised English translation of the book originally published in German in 1931. Starting from vectors and matrices the author moves on to the description of abstract group theory and its application to atomic spectra. This is a classical reference in the field of quantum mechanics and atomic physics which should be consulted by most physicists and chemists although the style is rather concise and the expected reader is someone that has already been exposed to the basic concepts of group theory and quantum mechanics. A nice and more pedagogical book on group theory is McWeeny's "Symmetry: An Introduction to Group Theory and Its Applications" while for those interested in the application of group theory to molecules the book "Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra" by Wilson, Decius, and Cross is highly recommended (both books are published by Dover).